Highlights

Tech for Good KAIST th
CNN Tech for Good 방송 촬영 이미지
<명현 교수 연구팀 ‘Tech for Good’ 방송 촬영 이미지 ⓒ CNN >

우리 학부 명현 교수 연구팀이 개발한  ‘드림워크(DreamWaQ)’ 및 ‘CAROS-H’ 기술이 미국 CNN 방송의 ‘테크 포 굿(Tech for Good)’ 프로그램에 소개됐습니다.다.

 

 ‘DreamWaQ’는 다양한 환경에서도 안정적으로 지형을 탐색할 수 있는 보행 로봇 제어 기술입니다. 4족 보행 로봇 중 100m 단거리 기네스 세계 기록을 보유한 하운드2(기계공학과 박해원 교수 연구팀)에도 탑재되어 우수한 성과를 창출하고 있습니다.  

 

벽을 기어오를 수 있는 드론인 ‘CAROS(Climbing Aerial RObot System)-H’는 다리가 6개 달린 곤충에서 영감을 받아 제작됐으며, 비행과 보행이 모두 가능한 미래형 로봇입니다.

 

CNN 제작진이 대전 KAIST 캠퍼스에 직접 방문해 명현 교수팀의 신기술을 촬영한 ‘테크 포 굿(Tech for Good)’은 11월 17일과 18일 이틀간 CNN을 통해 방송됐으며, 유튜브에서 관련 영상을 확인할 수 있습니다.

 

[Part1: DreamWaQ] https://youtu.be/gUhpe_72y2k?t=305

 

[Part2: CAROS-H] https://youtu.be/3k1TqmMcTPQ?t=315

 

 

thum 1

한동준 박사 (문재균 교수 연구실),

연세대학교 인공지능융합대학 컴퓨터과학과 전임교원 임용

 

한동준 박사(지도교수: 문재균)
한동준 박사 (지도교수: 문재균)

 

전기및전자공학부 MoonLab 졸업생 한동준 박사 (지도교수: 문재균)가 2024년 9월 1일부로 연세대학교 인공지능융합대학 컴퓨터과학과 전임교원으로 임용됐습니다.

 

한동준 박사는 2022년 2월 KAIST 박사학위를 취득한 후, KAIST 박사후연구원을 거쳐 Purdue University에서 1년 6개월간 박사후연구원으로 경력을 쌓았습니다. 

 

주 연구분야는 인공지능 알고리즘 개발과 통신 네트워크에서의 인공지능 최적화이며, 인공지능 분야 국제 저명 학술대회 (NeurIPS, ICML, ICLR) 및 통신/네트워크 분야 국제 저명 학술대회/학술지 (INFOCOM, JSAC, TMC, TWC)에 다수의 논문을 발표했습니다. 

 

향후 인공지능과 통신/네트워크의 융합 연구를 통해 사용자들이 효율적으로 인공지능 서비스를 이용하기 위한 기술 확보에 힘쓸 예정입니다. 많은 축하와 격려 부탁드립니다. 

th

전기및전자공학부 이안 오클리 교수 연구실 김지완 박사과정, 정호헌 학부생

‘ACM UIST Student Innovation Content’ Best People’s Choice Award 수상

 

수상자

<(왼쪽부터) 김지완 박사과정, 정호헌 학부생>

 

우리 학부 이안 오클리 교수 연구실의 김지완 박사과정 학생과 정호헌 학부생이 지난 10월 13일부터 16일까지 미국 피츠버그에서 진행되었던 ‘ACM UIST(ACM Symposium on User Interface Software and Technology)’의 일환으로 개최된 Student Innovation Content에서 Best People’s Choice Award를 수상했습니다.  Best People’s Choice Award는 학회 기간 중 가장 많은 참가자들의 호응을 얻어낸 프로젝트에 주어지는 상입니다.

 

수상상장 672c1ce581ba4
<수상한 상장과 트로피>

<VibraHand 시연 영상>

‘ACM UIST’는 인간-컴퓨터 상호작용 분야의 최우수 국제학술대회로 매년 출시되기 직전의 첨단 하드웨어를 이용하여 혁신적인 아이디어를 겨루는 Student Innovation Contest를 열고 있습니다. 

올해 주제는 Seeed Studio의 Gen-M Kit를 활용한 미래의 인터랙티브 장치를 만들어 직접 시연하는 것으로 치열한 예선을 거쳐 우리 대학을 포함해 카네기멜론대, 토론토대, 홍콩대 등 세계 유수 대학의 8팀이 본선에 진출했습니다. 

 

김지완·정호헌 학생은 스페이스 오디세이 등을 집필한 소설가 아서. C. 클라크의 “고도로 발전된 미래의 기술은 초능력 혹은 마법과 같다’는 유명한 구절을 인용하여, 마치 초능력을 경험해보는 것 같은 경험을 줄 수 있는 웨어러블 장치를 개발해 참여했습니다. 

 

이들은  표면음향파, 레이더, 초음파를 활용하여 벽 너머의 말을 들을 수 있는 스파잉, 눈을 감고도 주변의 움직임을 느낄 수 있는 초감각, 작은 물체를 공중에 띄울 수 있는 염력을 구현하는 글로브를 개발했습니다. 

 

김지완 학생은 “얼핏 보면 기술을 단순한 흥미 위주의 소재로 구현한 것이라 생각할 수도 있겠지만, 즐거움 또한 과학기술이 나아가야하는 방향 중 하나라고 생각하기 때문에 다양한 센싱 기술들을 최대한 재미있게 해석하고 시연하기 위해 노력했다”라고 말했습니다. 

241105 TH 2

images 000084 photo1.jpg 3

< (왼쪽부터) 전기및전자공학부 이정용 교수, 이민호 박사과정, 김민석 석사과정 >

 

전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 

 

우리 학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다. 

 

연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 

 

또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다. *다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임 

 

기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다. 이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다. 

 

특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다.

 

images 000084 image1.jpg 3< 그림 1. 페로브스카이트/유기 하이브리드 소자 구조와 다이폴 계면층(DILs)을 통한 전자구조 개선 및 전하 전달 능력 향상 메커니즘. 제시된 다이폴 계면층은 강력한 계면 다이폴을 형성하여 페로브스카이트와 유기 벌크 이종접합(BHJ) 사이의 에너지 장벽을 효과적으로 줄이고, 홀 축적을 억제하는 역할을 한다. 이 기술은 근적외선 광자 수확 및 전하 전달을 향상시키며, 그 결과 태양전지의 전력 변환 효율을 24.0%까지 끌어올렸다. 더불어, 극한의 습도 환경에서도 1,200시간 동안 성능을 유지하는 뛰어난 안정성을 달성했다. >

 

이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다. 

 

또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다. 

 

이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다. 

 

전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)’ 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting). 

 

 

한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.

 

 

관련 기사 

– 연합뉴스: KAIST, 페로브스카이트 융합 태양전지 세계 최고 효율 달성

-동아사이언스: 페로브스카이트 태양전지 효율 대폭 향상…20.4%→24.0%

외 다수

 
th images 000084 photo1.jpg 2

images 000084 photo1.jpg 2

< (왼쪽부터) 전기및전자공학부 김용훈 교수, 이룡규 박사과정 >

인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다. 

 

우리 학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다. 

 

슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다. *밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론 

 

그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다. *자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법

images 000084 image1.jpg 2

< 그림 1. 물질·소재 시뮬레이션에는 공간-시간 수준(level) 또는 스케일(scale)에 따라 나노미터(nm) 수준에서의 양자역학적 계산, 수십~수백 나노미터 규모의 고전역학적 힘장(force fields) 계산, 거시적 규모에서의 연속체 역학 계산 및 서로 다른 스케일의 시뮬레이션들을 혼합하는 계산 등의 다양한 방법론들이 활용됨. 이러한 시뮬레이션들은 이미 정보학(informatics) 기법 등과 결합하여 광범위한 기초연구 및 응용개발 분야에서 핵심적인 역할을 하고 있음. 최근에는 기계학습 기법을 도입해 시뮬레이션을 급진적으로 가속하고자 하는 노력이 활발하게 이루어지고 있으나 상위 스케일 시뮬레이션들의 근간을 이루는 양자역학적 전자구조 계산에 기계학습 기법을 도입하는 연구는 아직 미진한 상황임. >

 

김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다. 

 

연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다.

 

 

images 000084 image2.jpg 1

< 그림 2. 이번 연구에서 개발된 딥SCF 방법론은 전통적인 양자역학적 전자구조 계산에서 반복적으로 수행되어야 했던 자기일관장 과정을(주황색 박스) 인공신경망 기법을 통해 회피하여 DFT 계산을 급속히 가속화 하는 방안을 제공함(초록색 박스). 자기일관장 과정은 3차원 전자밀도를 예측하고 이에 해당하는 포텐셜을 구성한 후 양자역학적 콘-샴 방정식을 푸는 것을 수십-수백번 반복하는 과정임. 딥SCF 방법론의 핵심적인 아이디어는 전자밀도(ρ)와 구성 원자들의 전자밀도 합(ρ0) 차이인 잔여 전자밀도(δρ)가 화학결합 정보에 해당하므로 3차원 합성곱신경망 모델로 자기일관장 과정을 대체하는 것임. >

 

이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다. 

 

이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다.

 

 

images 000084 image3.jpg

< 그림 3. 탄소나노튜브 기반의 DNA 염기서열 분석 소자 모델(상단 왼쪽)에 대한 딥SCF 방법론 적용 예시. 고전역학적 원자간 힘뿐만 아니라(하단 오른쪽) 화학 결합의 정보를 담고 있는 잔여 전자밀도(상단 오른쪽) 및 전자 상태밀도(density of states, DOS)와 같은 양자역학적 전자구조 특성들(하단 왼쪽)을 SCF 과정을 수행하는 표준 DFT 계산 결과에 대응되는 정확도로 빠르게 예측함. >

 

전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 ‘네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)’에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints) 

 

한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.

 

e1730271496130

전기및전자공학부 제민규 교수 연구실 최종윤 · Vincent Lukito 박사과정,

제25회 대한민국 반도체 설계대전 기업특별상(Telechips) 수상

수상자

     <(왼쪽부터) 최종윤 박사과정, Vincent Lukito 박사과정>

 

우리 학부 제민규 교수 연구실의 최종윤 박사과정 학생과 Vincent Lukito 박사과정 학생이 10월 24일 서울 코엑스에서 열린 ‘제25회 대한민국 반도체 설계대전’에서 기업특별상(Telechips)을 수상하는 성과를 거두었습니다.

 

‘대한민국 반도체 설계대전’은 반도체 설계 분야 대학(원)생들의 설계 능력을 배양하고 창의적인 아이디어를 발굴하여 반도체 산업의 기초 경쟁력을 키우는 것을 목표로, 한국반도체산업협회와 산업통상자원부의 주최 하에 다양한 기업들의 후원을 받아 매년 개최되고 있습니다.

 

반도체 대전 수상 사진 1

     <시상식 사진>

 

수상한 연구 작품의 제목은 “Spike Sorting SoC with Delta-based Detection and Analog CIM-based Autoencoder Neural Network Feature Extraction Achieving 94.54% Accuracy”이며, 최종윤 박사과정, Vincent Lukito 박사과정이 참여하였습니다.

 

해당 연구는 창의성, 기술성, 사업성, 완성도를 기준으로 평가되어 창의적인 주제, 기술적인 높은 난이도 및 우수성, 상용화 가능성, 작업의 완성도 및 검증 수준에 있어 훌륭한 입지를 가지고 있음을 인정받아 기업특별상(Telechips)을 수여 받았습니다.

241030 hb1

명현 교수, 2024 한빛대상 수상

241030 hb3 side

<2024 한빛대상을 수상한 명현 교수 ⓒ대전MBC>

 

우리 학부 명현 교수가 2024 한빛대상을 수상했습니다.

 

한화그룹과 대전MBC가 공동 주최하는 한빛대상은 올해로 20주년을 맞이하였고, 지역사회 각 분야에서 봉사하고 공헌한 인물을 발굴해 시상하고 있습니다. 

 

한빛대상은 크게 5개 분야 (과학기술, 교육/체육진흥, 문화예술, 사회봉사, 지역경제 발전 분야)의 수상자 1명씩을 선정하여 각 상금 1천만원과 상패를 수여하며, 올해는 특별상 (파리올림픽 펜싱 2관왕 대전시청 오상욱 선수) 이 추가되었습니다.

 

과학기술부문 수상자인 명현 교수는 16년간 자율 주행, 자율 보행 등의 분야를 연구하여 해당 분야 발전에 기여했으며, 블라인드 보행 로봇 신기술인 ‘드림워크’ 제어기를 개발하여 국제 사족로봇 자율보행 경진대회 우승을 이끈 공로를 인정받았습니다.

 

시상식은 10월 24일 대전 MBC 공개홀에서 열렸으며, 10월 29일 대전 MBC TV로 녹화 방송됐습니다.

 

241030 hb88 side

   <명현 교수 한빛대상 수상 관련 대전 MBC 뉴스 보도 ⓒ대전MBC>

 

<관련 기사>

대전 MBC | 2024 한빛대상 6개 부문 수상자 선정

뉴스1 | ‘2024 한빛대상’ 특별상 오상욱 등 6개 부문 수상자 선정

중도일보 | 대전MBC 2024 한빛대상 수상자 발표

대전 MBC | 한빛대상 20주년..”우리 이웃이 주인공”

중도일보 | [현장취재]대전MBC 2024 한빛대상 시상식 현장을 찾아서

금강일보 | 한화그룹, ‘2024 한빛대상’ 시상식

awardRth

유창동 교수님 연구실 2024 분당서울대학교병원 급성신손상 데이터톤 대상 수상

members

<(좌측부터) 유창동 교수, 홍지우 박사과정, 구관형 박사과정, 이영환 석사과정, 윤선재 박사과정>

 

우리 학부 유창동 교수님 연구실의 홍지우 박사과정생, 구관형 박사과정생, 이영환 석사과정생, 그리고 윤선재 박사과정생이 ‘2024 분당서울대학교병원 급성신손상 데이터톤’에 팀명 ‘유벤져스’로 참가하여 대상을 수상하였습니다.  

 

해당 대회는 분당서울대학교병원이 주최한 온라인 데이터톤으로, 급성신손상 환자 데이터셋을 활용해 아이디어를 제안하고 디지털 헬스케어 AI 모델을 개발하는 대회입니다.  특히, 성능 뿐만 아니라 성별, 종교 등과 무관하게 공정한 성능을 보이는 AI 모델을 개발하는 것이 주요 목표입니다.

 

유벤져스 팀원들은 개발한 모델의 성능, 공정성, 독창성, 활용성 등을 인정받아 수상자로 선정되었습니다.

award

   <2024 분당서울대학교병원 급성신손상 데이터톤에서 대상을 수상한 ‘유벤저스’ 팀>

자세한 내용은 다음과 같습니다.
 
대회명: 2024 분당서울대학교병원 급성신손상 데이터톤
 
대회 개요: 급성 신손상(AKI) 환자 데이터셋을 활용해 실제 진료 현장에서 활용할 수 있는 AKI 예측 AI 모델을 개발. 예선에서는 MIMIC-IV 데이터셋으로 AKI 예측 AI 모델을 개발하고, 본선에서는 분당서울대학교병원의 실제 데이터로 실전 모델을 개발.
 
대회 기간: 9월 12일 – 10월 20일
 
수상: 대상 (분당서울대학교병원 의생명연구원장상)
 
참가자: 홍지우(팀장), 구관형, 이영환, 윤선재

공지사항

MORE

세미나 및 행사