AI in EE

AI IN DIVISIONS

AI in Signal Division

Enhanced Prototypical Learning for Unsupervised Domain Adaptation in LiDAR Semantic Segmentation

Title: Enhanced Prototypical Learning for Unsupervised Domain Adaptation in LiDAR Semantic Segmentation

Authors: Eojindl Yi, Juyoung Yang and Junmo Kim

Abstract: In this paper, we propose a range image-based, effective and efficient method for solving UDA on LiDAR segmentation. The method exploits class prototypes from the source domain to pseudo label target domain pixels, which is a research direction showing good performance in UDA for natural image semantic segmentation. Applying such approaches to LiDAR scans has not been considered because of the severe domain shift and lack of pre-trained feature extractor that is unavailable in the LiDAR segmentation setup. However, we show that proper strategies, including reconstruction-based pre-training, enhanced prototypes, and selective pseudo labeling based on distance to prototypes, is sufficient enough to enable the use of prototypical approaches. We evaluate the performance of our method on the recently proposed LiDAR segmentation UDA scenarios. Our method achieves remarkable performance among contemporary methods.

 

김준모7