AI in EE

AI IN DIVISIONS

AI in Circuit Division

Wonjae Lee, Yonghwi Kwon, and Youngsoo Shin, “Fast ECO leakage optimization using graph convolutional network”, Proc. Great Lakes Symp. on VLSI (GLSVLSI), Sep. 2020.

회로 설계 마지막 단계에서 더 적은 누설전류를 가지는 cell (e.g. 더 높은 Vth 혹은 더 긴 gate 길이를 가지는 cell)로 바꾸는 engineering change order (ECO)는 과정을 통해 회로의 소비 전력을 줄일 수 있다. 하지만 이 과정은 cell swapping하는것과 cell들의 timing을 검증하는 과정이 반복적으로 수행되기 때문에 오랜 시간이 소요된다. 본 논문에서는 graph convolutional network (GCN)을 적용하여 빠른 ECO를 수행하는 것을 제안한다. GCN cell들간의 연결관계와 timing 정보를 통해 Vth를 예측하고 평균적으로 83%의 정확도로 Vth를 정확하게 예측하였다. 또한, minimum implant width (MIW)를 고려한 timing violation fix를 위하여 heuristic Vth 재배정 방법을 제안하였다. 이를 통하여 누설전류의 52% 감소 (기존 ECO의 경우 61% 감소)와 기존 ECO방법 대비 두배 이상 빠른 ECO를 수행하였다.

 

AI in EE 신영수교수님 연구실4 0